UNDERSTANDING HUMAN-COYOTE ENCOUNTERS IN URBAN ECOSYSTEMS USING CITIZEN SCIENCE DATA: WHAT DO SOCIOECONOMICS TELL US? #### **TOPICS** - Background Information - Hypotheses - Methods - Analysis/Results - Discussion #### URBAN EFFECT ON BIODIVERSITY - A once species-rich community is replaced with a community composed of a small number of generalists, native and non-native (Hobbs and Mooney 1998). - Generalist species may persist in human-modified landscapes because of their high degree of behavioral flexibility which allows them to adapt quickly to a changing landscape. #### SYNANTHROPIC BEHAVIORS - Several aspects of the coyote's ecology may be responsible for this. - Absence of larger apex predators - Dynamic diet - Ability to Change activity patterns #### **INCREASING CONCERN** Coyote presence in human-dominated landscapes has been met with conflicting perceptions by human residents. #### QUANTIFYING URBAN HABITAT USE • Increasing coyote occurrence and the potential for negative human-coyote interactions have prompted several efforts to quantify coyote habitat use in urban areas. Radio Telemetry is the most popular method used to quantify urban coyotes' use of urban landscapes. #### CITIZEN SCIENCE APPROACH Citizen science is scientific research conducted, in whole or in part, by amateur or nonprofessional scientists Citizen science has many advantages over traditional research. However, it has its own limitations. #### CITIZEN SCIENCE APPROACH - Two studies have used citizen science data to map coyote habitat preference (Quinn 1995) or the likelihood of humancoyote encounters (Weckel et al. 2012). - Quinn (1995) explored potential biases between using publicly reported sightings and telemetry data. Similar orders of habitat preference were derived from the two datasets. - More recently, Weckel et al. (2012) used the locations of coyote sightings (determined by means of surveys sent home with K-12 students) and their proximity to roads, highdensity development, forest, and open water to estimate the likelihood of human-coyote encounters in Westchester County, New York. - The result was a predictive landscape model that accurately predicted the location of a hold-out set of sightings. #### SOCIOECONOMIC VARIABLES #### I hypothesize that: - residential areas with higher median household income typically provide more resources such as pets, pet food, and vegetative cover than residential areas of lower median household income. - a higher income may also suggest that residents place a higher value on their property and may therefore be more inclined to report coyotes as a possible nuisance. - residents with occupations that involve more outdoor activity (i.e. agriculture) will be more likely to witness a coyote than residents primarily working indoors. - higher densities of urban development may provide more food sources to the urban exploiter #### HOW? - I used a citizen science framework that consists of resident reported sightings in Mecklenburg County, North Carolina. - The importance of socioeconomic variables as predictors was assessed using a multi-model inference approach. - A predictive map was generated using model-averaged parameter estimates. - Model Validation #### STUDY AREA Mecklenburg County has seen a rapid increase in urbanization. Between 1976 and 2006, the percentage of urbanized land has increased from 12.5% to 57.6%. In the same time frame, Mecklenburg County's population has risen from 383,800 to 857,379. In 2013, the population is nearing I million. #### SIGHTINGS DATA - In February 2012 the Mecklenburg County Department of Natural Resources launched a website to gather countywide coyote sightings. - Used sightings submitted between February 1st 2012 and January 31st 2013 that contained spatial reference. - 707 total sightings used for analysis - Two-thirds (472) used for model development and calibration - One-third (235) used for model validation - 472 Pseudo-absences were randomly generated under the condition they were not in water #### PREDICTOR VARIABLES | Variable | Description | |----------|---| | agri | Proportion of residents that are over the age of 16 that work in agriculture, natural resources, or hunting and fishing | | bachel | Proportion of residents who have obtained a Bachelor's degree | | devin | Building and road density | | farm | Proportion of the area that is farmland | | forest | Proportion of the land that is forest | | imperv | Proportion of the land that is impervious | | manage | Proportion of the land that is managed clearing (i.e. golf courses and parks) | | medhh | Median household income | | water | Proportion of the land that is water | Table 1. Predictor variables of coyote sightings in Mecklenburg County, North Carolina, USA. #### **ANALYSIS** - The analysis portion of the study can be described in 6 individual steps: - I. Explore all possible logistic regression models using Akakie's Information Criterion (AIC) - 2. Test for spatial autocorrelation - 3. Generate autocovariate and run autologistic regression models to generate new AIC values - 4. Calculate model-averaged parameter estimates - 5. Create predictive landscape model - 6. Assess validity of predictive map #### STEP I: EXPLORATION USING AIC | Spatial scale | Predictor variables | AIC | K | Δ _i | ω_{i} | |---------------|---------------------------------|----------|---|----------------|--------------| | 2km radius | agri + devin + forest + manage | 1255.424 | 6 | 0 | 0.105501794 | | 2km radius | agri + devin + medhh + water | 1255.452 | 6 | 0.028 | 0.10403506 | | 2km radius | agri + devin + manage | 1256.444 | 5 | 1.02 | 0.063353361 | | 2km radius | agri + devin + manage + water | 1256.801 | 6 | 1.377 | 0.05299661 | | 2km radius | agri + devin + manage + medhh | 1257.144 | 6 | 1.72 | 0.044644359 | | 2km radius | agri + devin + imperv + water | 1257.623 | 6 | 2.199 | 0.03513606 | | 2km radius | agri + devin + imperv + manage | 1257.918 | 6 | 2.494 | 0.030317586 | | 2km radius | agri + devin + farm + manage | 1258.022 | 6 | 2.598 | 0.02878136 | | 2km radius | agri + bachel + devin + water | 1258.063 | 6 | 2.639 | 0.028197349 | | 2km radius | agri + bachel + devin + manage | 1258.065 | 6 | 2.641 | 0.028169165 | | 2km radius | agri + bachel + forest + manage | 1258.327 | 6 | 2.903 | 0.024710493 | | 2km radius | agri + devin + forest + medhh | 1258.652 | 6 | 3.228 | 0.021004316 | | 2km radius | devin + forest + medhh + water | 1258.945 | 6 | 3.521 | 0.018141969 | | 2km radius | agri + devin + forest + water | 1258.946 | 6 | 3.522 | 0.0181329 | | 2km radius | devin + medhh + water | 1259.168 | 5 | 3.744 | 0.016227835 | **Table 2.** The best models for predicting coyote sightings in Mecklenburg County, North Carolina, USA. Best models were those with the highest Akaike's Information Criterion (**AIC**) values and for which the sum of their weights (ω_i) equaled 0.75. The spatial scale is the distance from sighting or pseudo-absence locations within which predictor variables were measured. See Table 1 for predictor variable definitions. K = the number of estimated parameters; $\Delta i = AIC_i - \min AIC$ for each model i; $\omega_i = Akaike$ weight or the probability of being the best model given the observed data and the set of variables considered. #### STEP 2:TESTING FOR SAC - Spatial autocorrelation (sac) is described as a correlation of characteristics among nearby locations in space - Moran's I tests residuals for sac Every model tested as significantly or nearly significantly spatially autocorrelated #### STEP 3: GENERATE AUTOCOVARIATE - An autocovariate is a usercreated predictor variable intended to explain unknown error in a spatially-autocorrelated model (Dormann et al. 2007) - Used an inverse distance weight (IDW) calculation on the response variable - Incorporated autocovariate and explored autologistic regression models using AIC #### STEP 3 CONT... | Variable | | | | | | |------------|--|----------|---|----------------|----------------| | Group | Variables | AIC | K | Δ _i | ω _i | | | | | | | | | 2km radius | agri + devin + manage + autocov | 1219.712 | 6 | 0 | 0.1050575 | | 2km radius | devin + forest + manage + autocov | 1220.58 | 6 | 0.868 | 0.0680681 | | 2km radius | agri + devin + forest + manage + autocov | 1220.633 | 7 | 0.921 | 0.0662879 | | 2km radius | agri + devin + manage + medhh + autocov | 1221.181 | 7 | 1.469 | 0.0504009 | | 2km radius | agri + devin + manage + water + autocov | 1221.287 | 7 | 1.575 | 0.0477992 | | 2km radius | agri + devin + medhh + water + autocov | 1221.328 | 7 | 1.616 | 0.0468293 | | 2km radius | agri + devin + farm + manage + autocov | 1221.354 | 7 | 1.642 | 0.0462244 | | 2km radius | devin + medhh + water + autocov | 1221.403 | 6 | 1.691 | 0.0451057 | | 2km radius | agri + devin + imperv + manage + autocov | 1221.554 | 7 | 1.842 | 0.0418256 | | 2km radius | devin + forest + medhh + autocov | 1221.572 | 6 | 1.86 | 0.0414508 | | 2km radius | agri + devin + medhh + autocov | 1221.592 | 6 | 1.88 | 0.0410384 | | 2km radius | agri + bachel + devin + manage + autocov | 1221.597 | 7 | 1.885 | 0.0409359 | | 2km radius | agri + devin + forest + autocov | 1221.874 | 6 | 2.162 | 0.0356414 | | 2km radius | devin + water + autocov | 1222.249 | 5 | 2.537 | 0.0295478 | | 2km radius | devin + forest + imperv + manage + autocov | 1222.317 | 7 | 2.605 | 0.02856 | #### **STEP 4: AVERAGE PARAMETER ESTIMATES** | Predictor | Estimate (x ₂) | Upper 95%
CI | Lower 95%
CI | |-----------|----------------------------|-----------------|-----------------| | agri_2 | 0.306852535 | 0.730717 | -0.11701 | | autocov_2 | 1.686237084 | 2.230681 | 1.141793 | | bachel_2 | 0.003861193 | 0.017875 | -0.01015 | | devin_2 | 0.17806559 | 0.304014 | 0.052117 | | farm_2 | -1.101976411 | 2.847107 | -5.05106 | | forest_2 | 0.960442803 | 2.592639 | -0.67175 | | imperv_2 | -0.311410272 | 1.874939 | -2.49776 | | manage_2 | 4.751031201 | 10.25697 | -0.75491 | | medhh_2 | 4.2852E-06 | 1.09E-05 | -2.3E-06 | | water_2 | -1.436577472 | 1.366077 | -4.23923 | | Intercept | -2.080143585 | -1.03704 | -3.12324 | **Table 5.** Model-averaged estimates of the coefficients of predictors in the best models (Burnham and Anderson 2002) of coyote sighting prediction in Mecklenburg County, NC after accounting for spatial dependence. Upper and lower 95 % confidence intervals (CI) were calculated using unconditional variances (Burnham and Anderson 2002) #### STEP 5: PREDICTIVE LANDSCAPE MODEL #### STEP 6: MODEL VALIDATION - I classified the probability of sighting a coyote into 10 equal-interval classes categories ranging from 1 (0 < probability ≤ 0.1) to 10 (0.9 <probability ≤ 1) - To assess the validity of the predictive map, I calculated the correlation between the proportion of observed sightings in each probability class and the value of each probability class (Weckel et al. 2012). - The correlation was greater using the results of the autologistic regression models (r = .96) than the results of the logistic regression models (r = .54) #### DEVELOPMENT INTENSITY (+) Higher development intensities may result in more supplemental resources for urban coyotes #### OUTDOOR EMPLOYMENT (+) Intuitively, the more time a person spends outdoors, the greater is the likelihood that they will see a coyote. Farmers may be more inclined to report these nuisance coyotes in the hopes that they be removed or eliminated. ### MED HOUSEHOLD INCOME AND EDUCATIONAL ATTAINMENT (+) Possible link to golf courses. #### MANAGEMENT IMPLICATIONS Mecklenburg County Division of Nature Preserves and Natural Resources staff can use our results to target educational efforts to communities in areas where we predict particularly high encounter probabilities. Do not feed the coyotes #### THANK YOU! ## Any questions?